2640=16t^2+256t+1680

Simple and best practice solution for 2640=16t^2+256t+1680 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2640=16t^2+256t+1680 equation:



2640=16t^2+256t+1680
We move all terms to the left:
2640-(16t^2+256t+1680)=0
We get rid of parentheses
-16t^2-256t-1680+2640=0
We add all the numbers together, and all the variables
-16t^2-256t+960=0
a = -16; b = -256; c = +960;
Δ = b2-4ac
Δ = -2562-4·(-16)·960
Δ = 126976
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{126976}=\sqrt{4096*31}=\sqrt{4096}*\sqrt{31}=64\sqrt{31}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-256)-64\sqrt{31}}{2*-16}=\frac{256-64\sqrt{31}}{-32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-256)+64\sqrt{31}}{2*-16}=\frac{256+64\sqrt{31}}{-32} $

See similar equations:

| 1/2-5/8x=7/8x+31/2 | | 2x+3=19x+3 | | -1/2-5/8x=7/8x+31/2 | | 7k^2+k-13=0 | | 3(4−x)=13+3x | | 0.85+h=55.25 | | 3=20-14/x-6 | | 8a^2-2a-8=0 | | 2+6x=11−3x | | 9y=16+5y | | 19/x=120/120 | | 5r^2+8r-24=0 | | 7w+3=241 | | B=85+(10+9)w | | -17+(n)/(5)=33 | | 5u=3u+10 | | 6(z-2)-4=10 | | 3z+2+4z= | | 10=q-4+ 7 | | -24+-20n=8 | | 1200=6t+3900 | | 3m^2+8m-11=0 | | 7b+4b=9b | | 1/3x+2.5x=1/2 | | 1/3(4(1/3x-1/4)+4/3x+1=6 | | 6.8x+400=46.24+20x | | 5(x-8)-4x=2x+2(3x+8) | | 7x+4x=9x | | (3x+4)^2-36=15x | | -6(x-2.5)=12 | | 3(r−15)=-3 | | 1.2h=3.12 |

Equations solver categories